GOSFORD HIGH SCHOOL

Year 12

2011

HSC

MATHEMATICS

Assessment Task #2

Time Allowed: 90 minutes+5 minutes reading time

Instructions:

Start each question on a new sheet of paper.

Attempt questions 1-5.

Board approved calculators may be used.

Write using black or blue pen.

A table of standard integrals is provided at the back of this paper.
All necessary working should be shown in every question.
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QUESTION 1 (12 Marks) Start a new sheet of paper.

a) The gradient of a curve is given by E;‘?- =3x'-12
dx

dy

2
X

() find

(ii)  if the curve passes through (1,-2), find the equation
of the curve

(iii)  find the values of x for which the curve both increases
and is concave downwards

(iv)  find any point(s) of inflexion

(v) sketch the curve labeling all critical points
(do NOT include x — axis intercepts)

b) Find exact values of x for which the gradient of the curve
y = 2x(x+ 3)? is 14.

QUESTION 2 (12 Marks) Start a new sheet of paper.

a) Find the primitive function of  x7 -2

b) Find the indefinite integral of  [(6x+7)dx

. 2: -
c) Evaluate (i) j-[ (x" +x-5)x

Find i) [

d) Find the area bounded by the curve y = Jx . the y-axis and the lines
y=2 and y=3.

MARKS



QUESTION 3 (12 Marks) Start a new sheet of paper. MARKS

a) Evaluate log,32
b) Solve 2* = 1000 to 3 significant figures

¢) Sketch neatly, and stating Domain and Range, the graph of
y=Inx

o Q _ 2x+5
d) Find o ify= in—s_x

2
e) Evaluate f X+ e dx

f) (i) Sketch the curve y = 3—1; .showing any critical
information

(ii) Find the area enclosed by: y = ;‘x , the x — axis and the
linesx=1and x =2.

QUESTION 4 (12 Marks) Start a new sheet of paper.

a) Sketch neatly, showing any critical points / values, y = e* — 1

b) Differentiate y = eV®

¢) Find the stationary point of y = xe ™ and determine its nature.

d) (i) Find the area bounded by the curve y = e?*, the x @xdidkes

and the linesx=1andx=3

(ii) Rotate this area around the x- axis and evaluate the exact
volume of the solid formed

QUESTIONS (12 Marks)  Start a new sheet of paper.

a)

A natural gas pipe line is to be built connecting a coastal city S to
an offshore island 7" which is 5 km from the closest coastline
point 4. The distance between A and the city Sis 8 km. The
pipeline is to be run from S to a point P then underwater to 7.
The cost of laying the pipeline is $75 000 per km on land and
$100 000 per km under water.

T
5km ocean
hY
A <« x> P coast line
< 8 >
LetAP=x

(i) show that the length of the pipeline (1) is

VX425 + (8-x)

(ii)  find an expression for the cost C of building the
pipe line.

(iii)  find where P should be located to minimise the
cost of the pipeline

Question 5 continued over the page
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QUESTION 5 (b) Continued MARKS

b) A truncated cone is to be used as a part of a hopper for a grain
harvester. It has a total height of & metres. The top radius is to be
times greater than the bottom radius which is 2 metres.

@

(iD)

(iii)

AB = 21 metres
BC = h metres
EC =2 metres
CD = x metres

whe

-z

If x is the height of the removed section of the original cone,

show using similar triangles that x = 1—'1-1—1
K 2

Show that the volume of the truncated cone is given by

4 =(4—§£](r2 +1+1)

2
If the upper radius plus the lower radius plus the height of
the truncated cone must total 12 metres, calculate the
maximum volume of the hopper. 3

END OF TEST ©
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