GOSFORD HIGH SCHOOL

Year 12

2011

HSC

MATHEMATICS

Assessment Task #2

Time Allowed: 90 minutes+5 minutes reading time

Instructions:

- Start each question on a new sheet of paper.
- Attempt questions 1-5.
- · Board approved calculators may be used.
- · Write using black or blue pen.
- A table of standard integrals is provided at the back of this paper.
- · All necessary working should be shown in every question.

QUESTION 1 (12 Marks) Start a new sheet of paper.	MARKS
a) The gradient of a curve is given by $\frac{dy}{dx} = 3x^2 - 12$	
(i) find $\frac{d^2y}{dx^2}$	1
(ii) if the curve passes through (1,-2), find the equation of the curve	2
(iii) find the values of x for which the curve both increases and is concave downwards	3
(iv) find any point(s) of inflexion	2
(v) sketch the curve labeling all critical points (do NOT include x – axis intercepts)	2
b) Find exact values of x for which the gradient of the curve $y = 2x(x+3)^2$ is 14.	2
QUESTION 2 (12 Marks) Start a new sheet of paper.	
a) Find the primitive function of $x^{-2} - 2$	2
b) Find the indefinite integral of $\int (6x+7)^3 dx$	2
c) Evaluate (i) $\int_{-1}^{2} (x^3 + x - 5) dx$	3
Find (ii) $\int \frac{dx}{\sqrt{9-2x}}$	2
d) Find the area bounded by the curve $y = \sqrt{x}$, the y-axis and the lines $y = 2$ and $y = 3$.	3

QUESTION 3 (12 Marks) Start a new sheet of paper.

MARKS

a) Evaluate log₂32

1

1

2

2

2

2

2

2

3

- b) Solve $2^x = 1000$ to 3 significant figures
- c) Sketch neatly, and stating Domain and Range, the graph of
- d) Find $\frac{dy}{dx}$ if $y = ln \frac{2x+5}{3-x}$
- Find $\frac{1}{dx}$ if $y = in \frac{1}{3-x}$
- e) Evaluate $\int_{1}^{e} x^{2} + \frac{2}{x} dx$
- f) (i) Sketch the curve $y = \frac{1}{3-x}$, showing any critical information
 - (ii) Find the area enclosed by: $y = \frac{1}{3-x}$, the x axis and the lines x = 1 and x = 2.

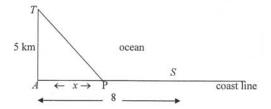
QUESTION 4 (12 Marks) Start a new sheet of paper.

- a) Sketch neatly, showing any critical points / values, $y = e^x 1$ 2
- b) Differentiate $y = e^{\sqrt{x}}$
- c) Find the stationary point of $y = xe^{-x}$ and determine its nature. 3
- d) (i) Find the area bounded by the curve $y = e^{2x}$, the x and x = 1 and x = 3
 - (ii) Rotate this area around the *x* axis and evaluate the *exact* volume of the solid formed

QUESTION5 (12 Marks) Start a new sheet of paper.

MARKS

a) A natural gas pipe line is to be built connecting a coastal city S to an offshore island T which is 5 km from the closest coastline point A. The distance between A and the city S is 8 km. The pipeline is to be run from S to a point P then underwater to T. The cost of laying the pipeline is \$75 000 per km on land and \$100 000 per km under water.



Let AP = x

(i) show that the length of the pipeline (l) is $\sqrt{x^2 + 25} + (8 - x)$

x + 23 + (8 - x)

2

(ii) find an expression for the cost C of building the pipe line.

2

(iii) find where P should be located to minimise the cost of the pipeline

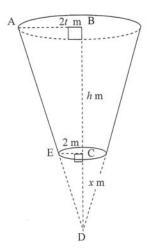
2

Question 5 continued over the page

QUESTION 5 (b) Continued

MARKS

b) A truncated cone is to be used as a part of a hopper for a grain harvester. It has a total height of h metres. The top radius is to be t times greater than the bottom radius which is 2 metres.



AB = 2t metres

BC = h metres

EC = 2 metres

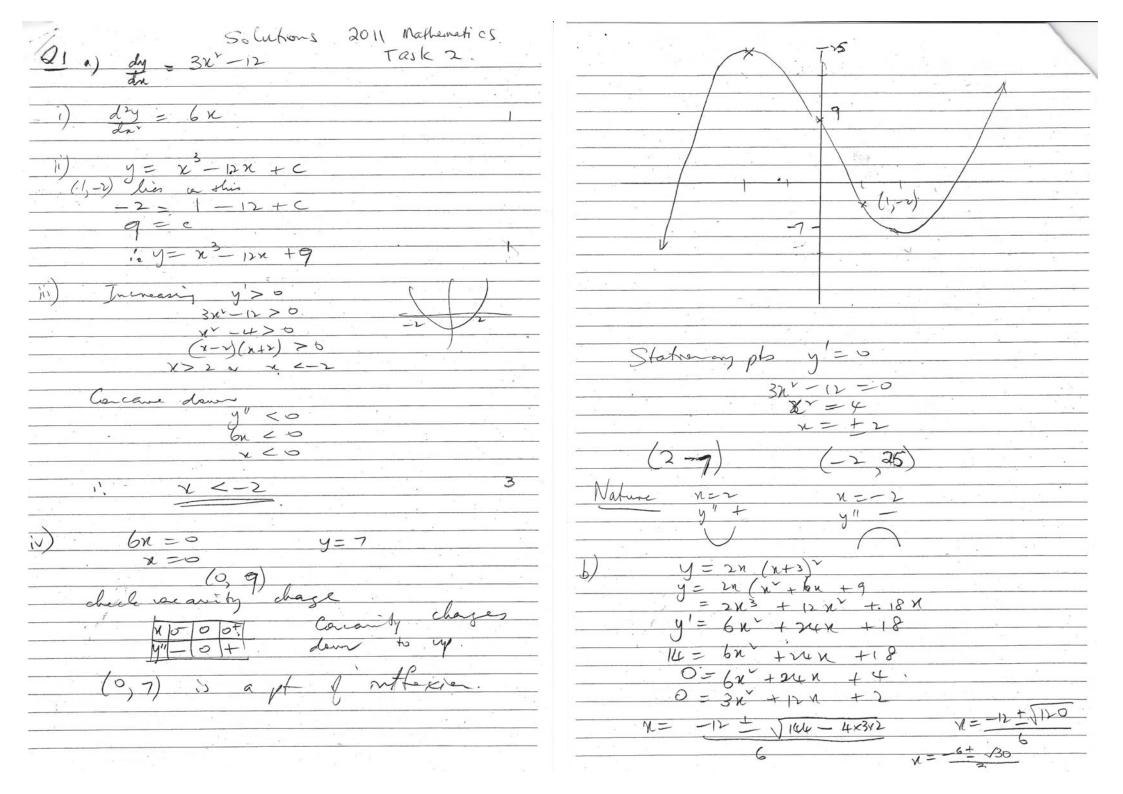
CD = x metres

2

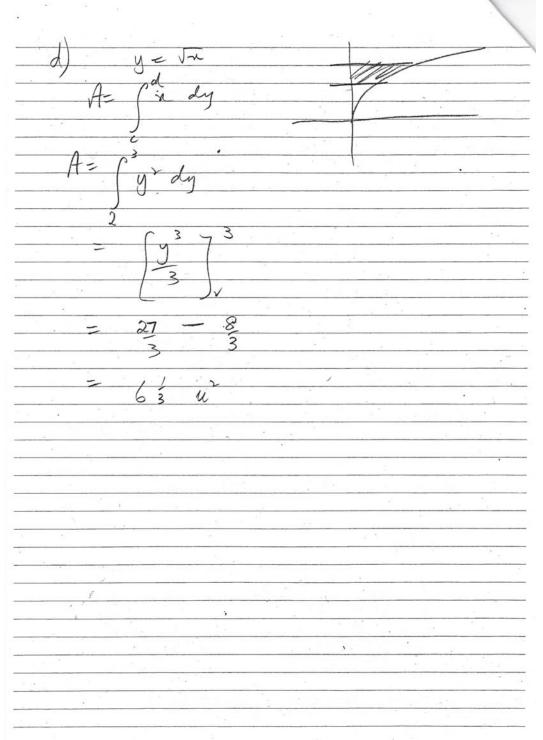
(i) If x is the height of the removed section of the original cone, show using similar triangles that $x = \frac{h}{t-1}$ 2

- (ii) Show that the volume of the truncated cone is given by $V = \left(\frac{4\pi h}{2}\right) \left(t^2 + t + 1\right)$
- (iii) If the upper radius plus the lower radius plus the height of the truncated cone must total 12 metres, calculate the maximum volume of the hopper.

END OF TEST ©

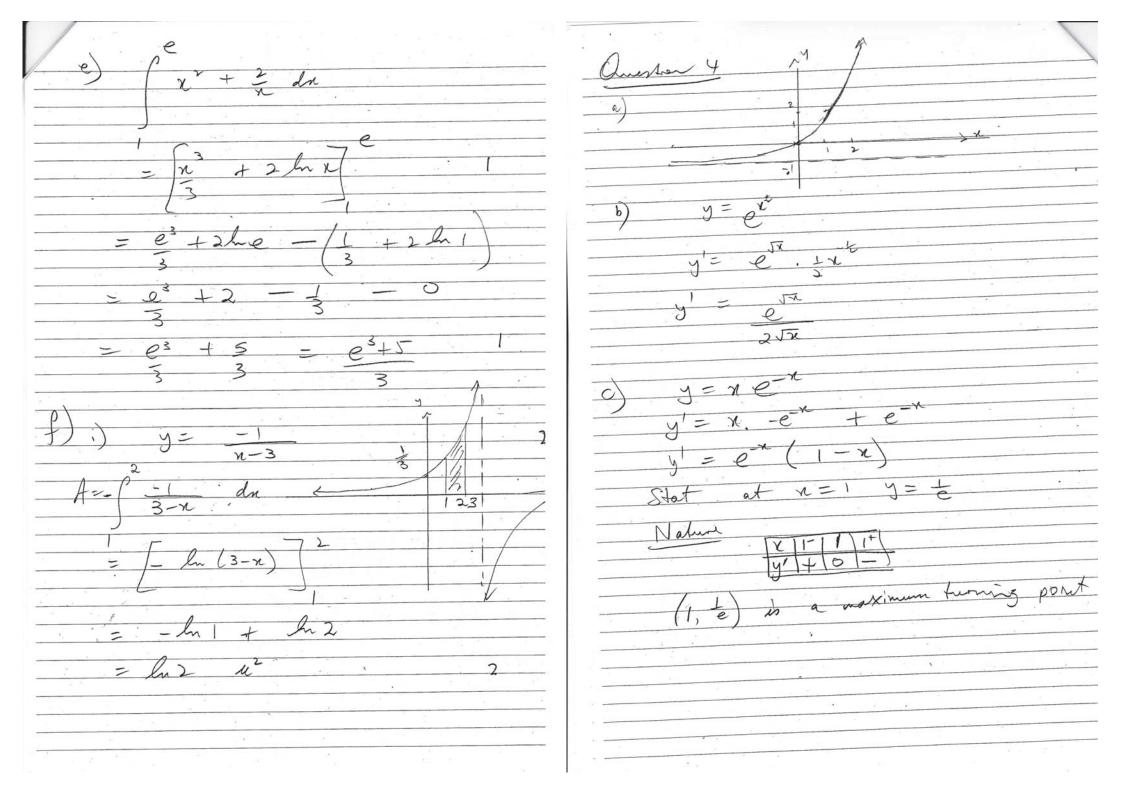


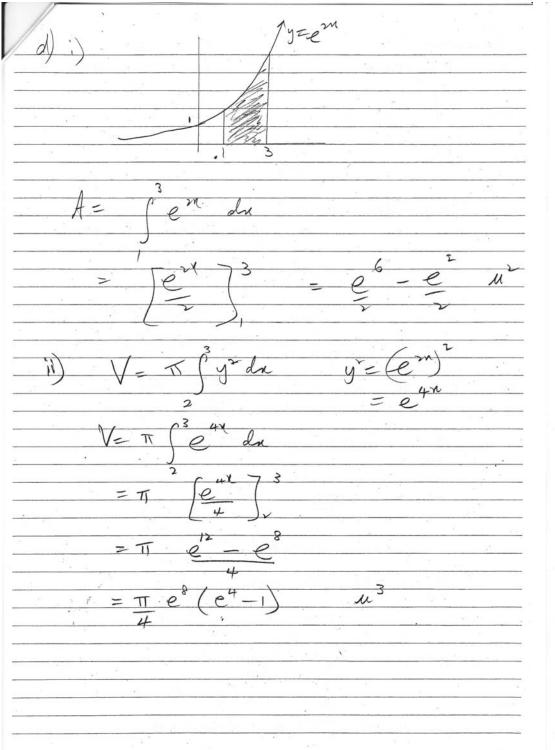
+ C 9-2N ニノ

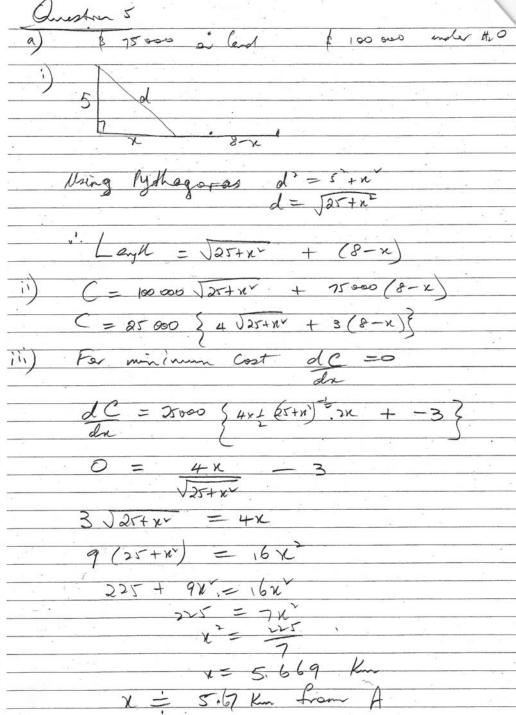


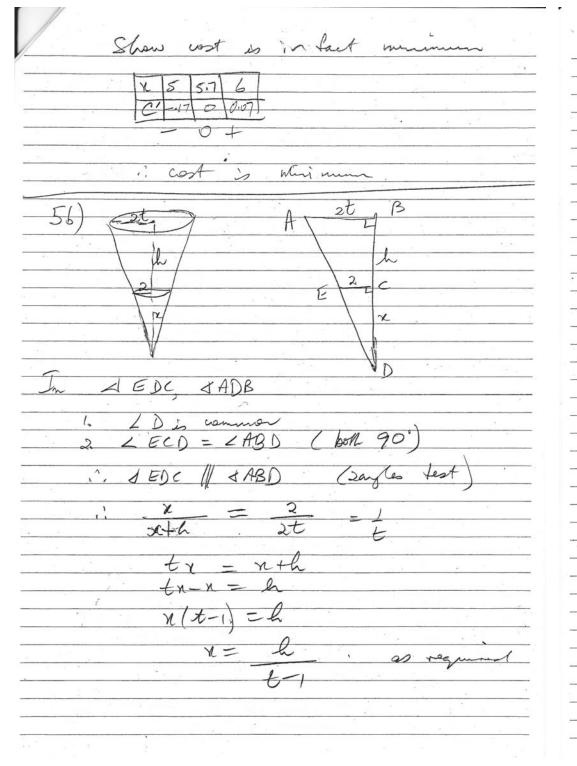
= 9.96578 x = 9.97 Kaye; all real 3-1 24+

2×+5 6 = 2x + 2x +5 (2n+5)-(3-4)









$$V = \text{ large } - \text{ small une}$$

$$= \frac{1}{17} \left(\frac{2t}{2t} \right)^{2} \left(\frac{x+h}{x} \right) - \frac{1}{17} \left(\frac{x}{2} \right)^{2} \times \frac{x}{3}$$

$$= \frac{1}{3} \left(\frac{4t^{2}x + 4t^{2}h}{x^{2} + 4t^{2}h} - \frac{4}{17} \times \frac{3}{3} \right)$$

$$= \frac{4\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}h} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{4\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{4\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{4\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{4\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^{2}h^{2}}{3}$$

$$= \frac{2\pi}{3} \left(\frac{x}{2t^{2} + 4t^{2}} \right) + \frac{t^$$

